The Path to Drawdown: Electric Cars (EVs)
The electric vehicle (EV) prototype appeared in 1828, but being unable to surmount the challenge of building a lightweight, durable battery with adequate range meant that internal combustion engines have dominated the automotive and transport landscape since the 1920s.
Thanks to supportive policies and falling costs, today that landscape is changing. More than 1 million EVs now take to the roads. The difference in impact on the climate is remarkable. Compared to internal combustion vehicles, CO2 emissions drop by 50% if an EV’s power comes off the conventional grid. If powered by solar energy, emissions are cut by 95%. Once households purchase EVs, their operating costs are often cheaper than gas-based cars, too.
What once used to be a limitation for EVs - the question of how far the car can travel on a single charge - is now much less of a concern. The average range of a battery electric vehicle produced in 2020 is about 217.5 miles, up from 124 miles in 2015.
What’s making this increase in mileage possible is the continuing development in battery capacity. Global EV battery capacity is expected to increase from around 170 GWh per year today to 1.5 TWh per year in 2030. At the same time, the cost of batteries is falling as their production reaches greater scale.
To be on track to remain under 1.5ºC of warming, 100% of passenger cars and vans (p. 138) need to be running on electricity by 2050. This is a jump from 5% of cars and 0% of vans in 2020, respectively. Accomplishing this overhaul of the transportation landscape means EV production and ownership need to continue to expand over the next three decades:
- <::marker> 11 million EV cars and vans were on the road in 2020
- <::marker> 2 billion EV cars and vans (100% of total global sales) need to be on the road by 2050
This would require a CAGR of 18.94% from 2018-2050